

FUEL DENSITIES

Home

We usually find the mass energy content of fuels tabulated on an energy/mass basis. Yet the energy/volume is often equally important for shipment, storage and use. This table includes the densities of various fuels and calculates the volumetric energy density.

Biomass Energy

Gasification & Reforming
Liquid Fuels
Wood Cooking
The BrushSaw
Energy Rosetta
Stone
Bookstore
About the BEF
Links

LinksSearch

Γ	Т																						\Box
ľ		FUEL PROPERTIES: From Reed, Jamie & Andries						HHV- base	LHV-	base	нни	/-base	LHV- base	LHV- base	LHV-base	HHV- base	HHV- base	HHV-base					П
r	7		Mass				Ma	iss	Volun	netric	Volur	netric	Relative	Relative	Relative	Relative	Relative	Relative					П
re	ef r	FUEL TYPE	Den	sity	Moisture	Ash*	Ene Den		Ene Den		Ene Der	ergy nsity	Mass	Bulk Vol.	Bulk Vol.	Mass	Bulk Vol.	Bulk Vol.	Unit**	Cost	Co2 Emissions		
			kg/	m3	% MC	%	MJ/k GJ/		GJ/	/m3	GJ/	/m3	Ener. Dsy	Ener.Dsy	Multiplier	Ener. Dsy	Ener.Dsy	Multiplier	Cost \$	\$/Gj	kg/Gj1	kg/Gj2	
L			solid	bulk					Solid	bulk	Solid	bulk	(to coal AW)	(to coal AW)	(to coal AW)	(to coal TR)	(to coal TR)	(to coal TR)					
L	4																						П
1	_\	Brown Coal - VIC	1120	860	62.5	2	8.0		9.0	6.9			0.33	0.34	2.97				5/t	0.63	93.3	87.7	Ш
2	1	Black Coal - NSW	1450	940	8		24.0		34.8	22.6			1.00	1.11	0.90				30/t	1.25	90.7	89.4	Ш
43	\rightarrow	Petrol	_	n/a	<1	<1	34.2/1				_		1.00			_			_	21.35		71.3	Ш
5	_	Auto Diesel LPG	_	n/a n/a	<1 <1		45.7 26.2/I		38.5		-	\vdash	1.90			-			0.74/I	19.25		74.9 64.7	+
6	-			n/a	<1	<1	37.2/1												n/a	13.81	50.9	59.4	H
7	\neg			367	50%	<1 variable	11.85		13.0	4.3			0.49	0.21	4.69				20/t	1.69	90.0		П
8		Sawdust (air dry)	800	267	10%	<1 variable	17.06		13.6	4.6			0.71	0.22	4.48				20/t		90.0		
9		Woodchips (wet)	1100	550	50%	<1 variable	11.85		13.0	6.5			0.49	0.32	3.13				35/t	2.95	90.0		П
1		Woodchips (forest dry)	800	400	10%	<1 variable	17.06		13.6	6.8			0.71	0.33	2.99				35/t		90.0		
1	1 \	Wood Pellets	n/a	705	6+- 2%	0.33 to 1	19.75			13.9			0.82	0.68	1.47				165/t	8.35	90.0		
1		US Forest Residues	n/a	340	50%	<1 variable	11.6			3.9			0.48	0.19	5.17				38/t	1.64	90.0		
1	_	Bagasse (wet)			50%		8.2						0.34										П
1		Bagasse (air dry)			13%		16.2						0.68										
1	\rightarrow	Charcoal			5%		30						1.25										Н
1	6	Torrefied Wood	600	300	10%	<1 variable	21.5		12.9	6.5			0.90	0.32	3.16				n/a				
L	4										_											\vdash	Ш
1		nternatl steam		850			24			20.4			1.00	1.00	1.00								Ш
1	-	Loose saw dust (dry)		200			18			3.6			0.75	0.18	5.67								Ш
L	<u>"</u> (Wood pellets (dry)		650	201		18		23.4	11.7			0.75	0.57	1.74								Ш
12	U	Torrefied pellets	1300	050	3%		22		28.6	14.3			0.92	0.70	1.43							\vdash	H
2		softwood chips (dry)		190	7%			20				3.8				0.62	0.11	9.42					П
2	<u>ر</u>	HD 1/4"sawdust		680				20				13.6				0.62	0.38	2.63					
2	,	3/8" peanut shell pellets		650				19.8				12.9				0.61	0.36	2.78					
2	4	Corn		760				19				14.4				0.58		2.48					
_	_	Soybeans		770				21				16.2				0.65	0.45	2.21					4
		Coconut shells 1/4"		540				20.5				11.1						3.23					
		Coal bitumous		1100				32.5			07.0	35.8				1.00	1.00	1.00					\perp
			920 880					41.2 45.7			37.9 40.2					1.27							+
F	ارد	Diesei	000					40.7			40.2					1.41							+
t																							\Box
		* Percentages by weight.	/																				
-												Ш											Ш

(in G.I/m3) on I	ensity (in MJ ow Heat Va	/kg or GJ/to	on) and So	olid and	Bulk \	/olume	tric de	nsity									
Costs - Unit cos Brockway (199	t for Black a	and Brown	coal from														
Energy density cost of transport	- effects vol	ume of thro	oughput re	quired,	storage	е,											
Figures for Woo	od Pellets ba 8000 to alm	sed on 850 ost 9000 b	00 btu/lb.	Wood p	ellets	range i	in ener	gy									
Figures for saw	dust and wo	odchips ar	e based o	n an en	ergy va	alue fo	roven	dry									
eucalypt hardw for energy valu				s pine.				П	+								
would be about	10% higher			, p,				Щ_	_	Щ							
Figures were co	onverted to	l energy valu	les at vario	ous	-			-	+	+							\vdash
moisture conte	nts				\ ma0()	- 51/	\square	Н—	-	Н—					-		
	(od)*(100-	formula EV (MC/8))/(10	00+MC)	value @	(mc%)	= EV											
Density of was	d reflect one	ravimata a	l l		an Fa		t Augst	ralian									
hardwoods. Gr	Density of wood reflect approximate averages for common East coast Australian hardwoods. Green density varies considerably																
	less than	air dry dens	sity (700- t	10 900+)	, relfec	ting va	ariation	in									
Bulk Density of the original woo	woodchips	and sawdus	st are take	n to be	50% a	nd 339	% of										
1 - Co2 emission www.gas.asn.A																	
2 - Co2 emissio																	
energy site			\vdash		-			-	+	H							\vdash
	5 cu foot pe																
1055.05	6 joules per btu	British th 1055.056	nermal unit	ts(Intern	ationa	l table)	X										
		Btu (th) >	x 1054.350														
	+	Btu (mea	an) x 105	5.87	-			-	+	\parallel							⊢
** - Unit cost is		he fuel to the	ne end use	er in uni	ts												
common for the		al is cost to	nower sta	ation ne	trol to	consur	mers		+	-							\vdash
	etc. Pelle	t costs are	USD.	rtion, pe		0011001	11010										
^ - Bulk densition	s for coal a	s sized for '	transportir	ng on	-H			-	+	H				-		\vdash	\vdash
conveyors.			,	5				Ш	-	Ш							_
In terms of valu	e on the wo	rld market,	1 green to	onne of				-									
woodchips is w			or cool on	4 630				_	+	-							\vdash
	for iron or		or coar and	1 \$30													
										П							
	e on the wo	rld market, ne, with \$60 fo	1 green to	onne of													

	FUEL SOURCE references															
1	Pers Comm Mr. Mic Power - email 31 Oc		rd Mine St	rategy M	anager	Loy Ya	ang									П
2	Pers Comm Ross S Station, email 2/11/0		evices Ma	nager Er	aring P	ower										П
	Co	mm 31 (n Ministry Oct 2000		y & Util	ities - P	ers									
3	Australian Institiute www.aie.org.Austral				uels.htr	n										
4	Australian Institiute www.aie.org.Austral				uels.htr	n										П
5	Energy value from C figures given.															П
6	Gross calorific value after extraction of NGL's WEC 2000. Price (1998) from Energy at a Glance 1999 NSW															Ш
7 8			-				-		-							\mathbb{H}
9		_	+				+		+-	\vdash					\vdash	H
10																
11	1 from Pellet Flame web site -															
	in :															
	on	fuel qua		% depen	nding											
12	Pers Comm Steve J 38\$ per bdt															
13	Energy and mc from Assessment handbo	ok														
14	Energy and mc from Assessment handbo	ook	nouse Gas													Ш
15	5mc and 29 according to GGAH	1														Ш
16	Assumed a 20% we dry" chips.			"forest												Ш
17	approximate plant d A. Weststeijn															Ш
18	approximate plant d A. Weststeijn															Ц
19	approximate plant d															Ц
20	data from Tom Reed A.Weststeijn	d via														Ш
21	data from Tom Reed 28th, 2001	ds postir	ng of May													H
22	data from Tom Reed 28th, 2001															
23	data from Tom Reed 28th, 2001		•													
24	data from Tom Reed 28th, 2001															
25	data from Tom Reed 28th, 2001															Ш
26	data from Tom Reed 28th, 2001															Ш
27	data from Tom Reed 28th, 2001															Ш
28	data from Tom Reed 28th, 2001															Ц
29	data from Tom Reed 28th, 2001	ds postir	ng of May													Ш
																H
																H
_		-	1													
								4	7	>						