Gasification Temperatures in Natural Draft Top-Lit Updraft Gasifiers

Julien P. Winter

INTRODUCTION

Background

- ND-TLUD gasifiers may be the most ecologically sound method of cooking and generating charcoal (biochar) for families using wood or densified fuel.
- We need to know better how ND-TLUDs work:
 - Adapt the technology to local conditions.
 - We can't over-ride the system with a fan; we have to work with the system and its internal interactions.

Objective of this Study

Measure the relationship between maximum fuel bed temperature and gasification rate.

- What can we achieve using only natural draft?
- If we can measure gasification rate of a particular type of fuel, can we estimate the temperature (heat) caused it?

METHODOLOGY

Experimental TLUD and Burner

Primary Air Control

Switching grates with varying grate apertures.

ND-TLUD Reactor 32 cm Tall

Thermocouples in the center at 5, 10, 15, 20 cm above the grate.

TLUD Enclosed in a Shroud Thermocouple data logger reading every 5 seconds

Temperature Measurements

Fuels: Pellets, Chips, Sticks

Fuels: Vertical Spruce Lumber

PRELIMINARY EXPERIMENTS

Preliminary Experiment 1: Temperature in the Horizontal Plane

Horizontal Temperature 8 cm Above the Grate

Preliminary Experiment 2:

Fire-break rings in a fuel bed of willow chips to stop channelling

Adding three rings enforced TLUD conditions, but slowed down the reaction rate vs. no rings

FUEL BED TEMPERATURES

Softwood Pellets

Means of duplicate trials

Poplar Wood Chips

Means of duplicate trials

Pieces of Hardwood Sticks

Means of duplicate trials

Vertical Spruce Lumber

Unreplicated trials

Vertical spruce lumber gasifying on a 57% aperture grate

CONCLUSIONS

Conclusions

- There is generally a linear relation between gasification rate and temperature, because heat drives the velocity reaction front travelling down the fuel bed.
- If we know the gasification rate of a particular fuel, we can estimate what the maximum temperature was.
- The temperature for pellet fuels falls within a comfortable range of 600 to 750 °C
- Fuels > 2 cm thick are capable of 1000 °C, and if vertical up to 1150 °C or more, and a 5:1 turndown ratio of gasification.

Implications

- Design TLUDs to prevent or withstand temperatures
 > 800 °C
- Design burners to function on a wide or narrow range of gasification rates.
 - Presence or absence of constrictions to gas flows
 - Ratio of primary / secondary air flows in response to pyrogas flame buoyancy.
- Need to evaluate biochar safety for PAH and dioxins over the whole temperature range.

- bioenergylists.org for hosting the "Stoves" discussion group
- Christian Commission for Development in Bangladesh for fostering the Bangladesh Biochar Initiative

ACKNOWLEDGMENTS