Nine Top-Lit UpDraft (T-LUD) Gasification Advances of 2005

A presentation at the ETHOS 2006 conference by:

Paul S. Anderson, Ph.D., Biomass Energy Foundation (BEF),

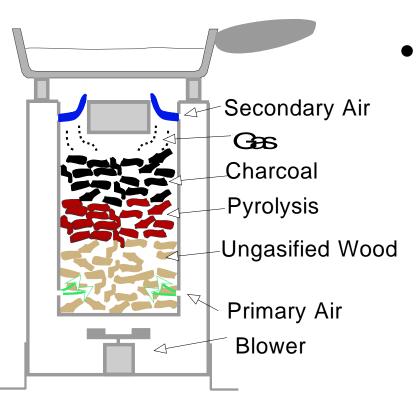
(e-mail: psanders@ilstu.edu)

Alexis Belonio, M.S. Engr., Central Philippines University

(e-mail: atbelonio@yahoo.com)

Thomas B. Reed, Ph.D., Biomass Energy Foundation (BEF)

(e-mail: tombreed@comcast.net)


What is Top-Lit UpDraft (T-LUD) gasification?

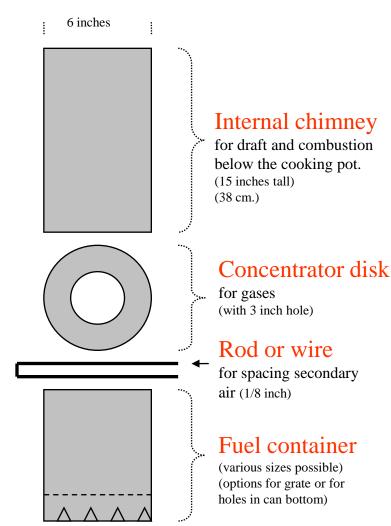
- A distinctly new form of *controlled* combustion conceptualized in 1985 by Dr. Thomas B. Reed.
- Highly efficient burning of dry biomass such as woodchips, corn cobs, and small briquettes in cookstoves appropriate for Third-World situations.
- Flaming pyrolysis at the top of a column of chunky dry biomass is starved of oxygen, resulting in pyrolytic gases ("smoke") moving upward to where fresh secondary air enters, resulting in clean combustion of the gases.

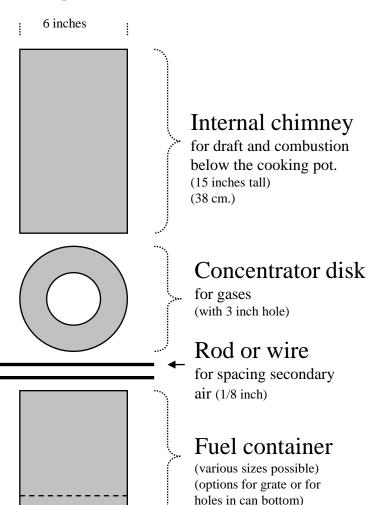
In the twentieth anniversary year of T-LUD gasification there were nine (9) accomplishments in three categories:

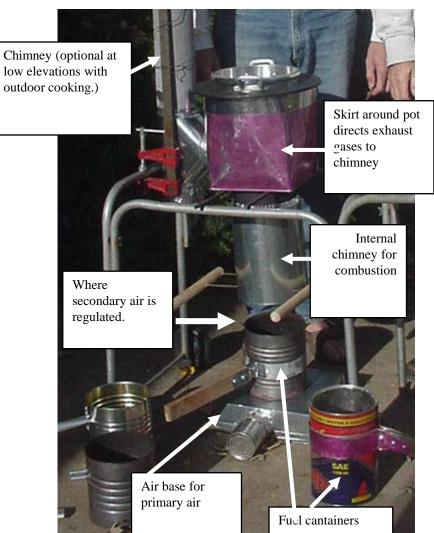
- A. Reed's Woodgas Campstove [with battery-powered forced air]
- B. Anderson's Juntos "Model B" T-LUD gasifier [with natural-draft air]
- C. Belonio's Rice Husk T-LUD gasifier [with electricity-powered forced air]

1. Reed's Woodgas Campstove [with battery-powered forced air]:

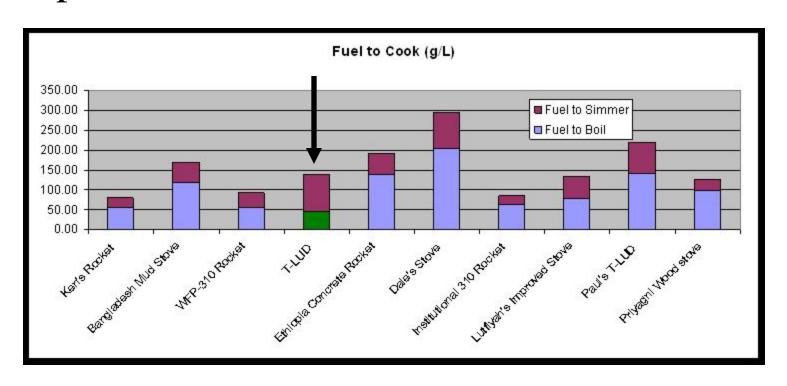
- Was scientifically measured as the cleanest burning of eighteen biomass stoves tested.
 - Research conducted at Aprovecho facilities.
 - Reported in a ShellFoundation publication.

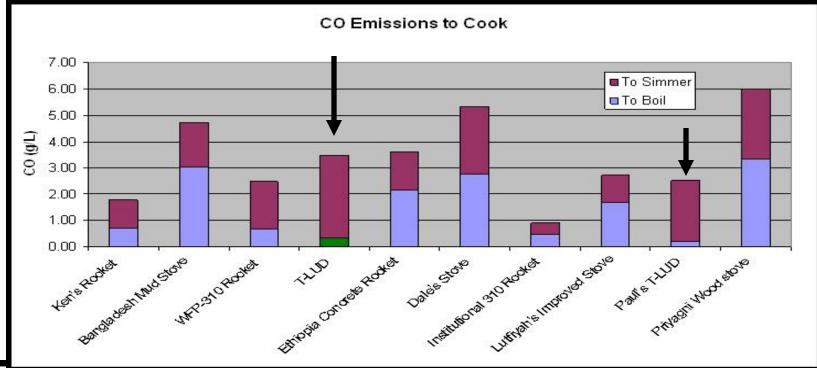

#2. Reed's Woodgas Campstove [with battery-powered forced air]:

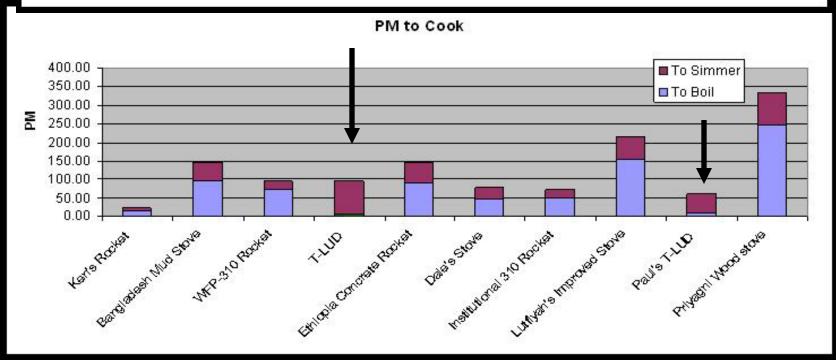

- Is now commercially manufactured and marketed for under US\$100.
 - New units are manufactured in Mexico by an American company.
 - An initial pilot production of 200 units was in 2003.


#3. Anderson's "Juntos B" T-LUD gasifier [with natural draft air]:

- Design parameters of the gasifier and combustor were finalized in August 2005.
 - Four pieces of metal
 - A full stove requires support structure and application device.


Anderson's "Juntos B" T-LUD gasifier [with natural draft air]:



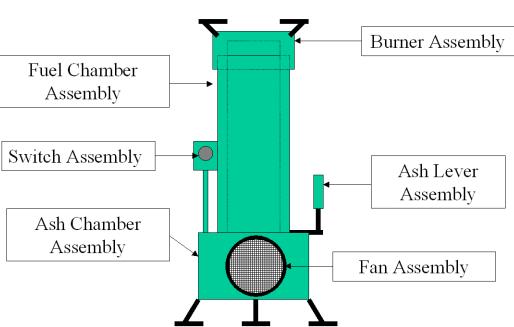


#4. Anderson's "Juntos B" T-LUD gasifier [with natural draft air]:

• Was measured and judged the cleanest burning of nine natural-draft biomass stoves at Stoves Camp 2005.

#5. Anderson's "Juntos B" T-LUD gasifier [with natural draft air]:

• Entered into production and marketing in India, with some models under US\$20.


#6. Belonio's Rice Husk T-LUD gasifier [with forced air]:

• Achieved the first consistently successful T-LUD combustion of a fine-particle biomass waste, specifically rice husks.

Belonio's Rice Husk T-LUD gasifier [with forced air]:

Schematic Drawing of Rice Husk Gas Stove

#7. Belonio's Rice Husk T-LUD gasifier [with forced air]:

• Is the first T-LUD gasifier with complete gasification (both pyrolytic and carbon gasification), yielding a consistent light-blue flame and low emissions.

#8. Belonio's Rice Husk T-LUD gasifier [with forced air]:

• Successfully demonstrated remote (delayed) combustion of gases from a T-LUD gasifier (all others use close-coupled combustion).

#9. Belonio's Rice Husk T-LUD gasifier [with forced air]:

• Began limited production in the Philippines, with an approximate cost of US\$200 per unit.

Alexis Belonio and some of his stoves.

Summary of the nine accomplishments

- Three (3) refer to commercial stove production.
- Three (3) refer to recognition for clean combustion. (Two measured and one visual.)
- One (1) refers to using natural draft and low costs per unit.
- One (1) refers to fine-particle agro-waste fuels.
- One (1) refers to remote combustion of the gases.

Discussion of near-future international stove-use activities.

- In India, with ARTI (led by Drs. A.D. and P. Karve)
 - User feedback from 20 households (Jan/Feb 2006)
 - User feedback from 100 households (March/Apr 2006)
 - Inclusion in ARTI's work with Shell Foundation.
- In the Philippines, additional models and sizes.
- In Bolivia, with CEDESOL (with David Whitfield)
 - Initial stove production and installation (Feb/Mar 2006)
- In southern Africa, pending sponsorship.
- In additional areas based on requests for assistance and funding.

Research and Development Topics for T-LUD gasifier stoves

- Materials:
 - Use of ceramic for stove construction & metal protection.
- Sizes: Smaller and larger versions
- Forced air versions:
 - Supply, costs, and benefits of blowers/fans
 - Standardized blower/fan product for T-LUD forced air
- Gasification research:
 - How is the blue flame of Belonio's gasifier produced?
- Fuels of all types: Making waste biomass into fuels.
- Applications of the heat and user-driven issues.

And now, an added surprise!!

An Introduction to Small Multi-Draft Continuous-Feed Gasifiers

A presentation at the ETHOS 2006 conference by:

Paul S. Anderson, Ph.D., Biomass Energy Foundation (BEF)

(e-mail: psanders@ilstu.edu)

Paul W. Wever, Chip Energy, Goodfield, Illinois

(e-mail: pwever@pwec.com)

Multi-Draft Gasifier (MDG) with Continuous Feed of Biomass Fuel

- Pioneer work done in the 1990's by Mr.
 Agua Das of Lakewood, Colorado.
- Variations for a larger natural-draft unit made in 2005 by Dr. Paul S. Anderson of Normal, Illinois.
- Designs and prototypes in 2005 06 by Mr.
 Paul W. Wever of Goodfield, Illinois, and Dr. Anderson.

Multi-Draft Gasifier (MDG) with Continuous Feed of Biomass Fuel

- Bottom-lit mainly up-draft operation.
- Air enters in three controlled positions:
 - Upward at bottom, sustaining the combustion and gasification of the red-hot char.
 - Downward through the biomass fuel,
 promoting the flaming pyrolysis processes.
 - Laterally near the top for partial combustion of the gases inside the gasifier.

• Pictures will be added to this presentation, but for the moment please see the printed brochure and the actual gasifiers on display at the ETHOS 2006 Conference.

Notes:

- All current units require a chimney for essential natural draft, but forced air units are being developed.
- Units are currently only being sold to research and development entities for purposes of applications development.
- Prices range from US\$150 to \$600 for sizes ranging from about 6 to 200 liters (1.5 to 50 gallon) internal capacities, with heat outputs of approximately 15K to undetermined BTUs.